Heifer Repro and Sexed Semen

Paul M. Fricke

Professor of Dairy Science

1

Inseminations in Jersey Females ■ % Beef conventional ■ % Jersey conventional ■ % Jersey sexed 100 14% 13% 13% 90 40% 45% 46% 42% 46% 80 Insemiantions (%) 70 60 50 40 30 20 27% 10 13% 10% 12% 16% 0% - 0% - 0% - 0% - 0% - 1% - 0% - 2%₹006 ₹00, ₹008 ₹008 ₹010 ₹017 ₹012 ₹013 ₹014 ₹015 ₹016 ₹01, ₹018 ₹018 ₹019 ₹050

Year

#OARD'S PAIRYMAN

Domestic beef semen sales hit a new high

April 15 2024

By Abby Bauer, Managing Editor

- Of the 9.4 million units of beef semen sold domestically in 2023, 7.9 million units were used in dairy herds (NAAB). That was up nearly 1 million units from the year before.
- By contrast, beef semen sold for use in beef cattle, both domestically and in the export market, was down 1.4 million units.

7

https://doi.org/10.3168/jdsc.2023-0372 Short Communication Physiology

The association between insemination eligibility and reproductive performance of nulliparous heifers on subsequent body weight and milk production of primiparous Holstein cows

- Data from a Holstein herd milking ~7,000 cows
- Breeding age heifers were inseminated primarily based on age
- Percent mature body weight (%MBW) was determined based on 3rd and 4th lactation cows
- 1st lactation cows were weighed at 30 DIM and grouped into quartiles based on body weight

Measuring Heifer Growth

Only 36% of US dairy heifer growers record body weight and average daily gain¹

Mature Body	Size	Benchmarks	2
-------------	------	------------	---

Time	Weight (%)	Height (%)
1 st Insemination	55	90
Pre-calving	94	95
Post-calving	85	95

NAHMS, 2011¹; Van Amburgh and Meyer, 2005²; Van Amburgh et al., 1998²; Heinrichs and Hargrove, 1987²

M. W. Overton[†] and K. C. Dhuyvetter Elanco Animal Health, Greenfield, IN 46140

Table 1. Herd-level means, SD, and 95% CI from the 50-herd data set for replacement heifer metrics

Item	Mean	SD	95% CI	
% Heifers born alive	94.3	0.51	93.2-95.3	
% Survival to 13 mo	89.8	0.81	88.1 - 91.4	
% Sold before 13 mo	4.2	0.75	2.7 - 5.7	
% Dead before 13 mo	6.0	0.47	5.1 - 7.0	
% Heifers over 13 mo that conceived	93.2	0.57	92.1 - 94.4	
% Pregnant heifers that calved	93.6	0.69	92.3-95.0	
% Calving events with a heifer birth that calved	73.9	1.00	71.8 - 76.0	

13

Body weight at 30 DIM, Mature Body Weight and age at first calving

	Body Weight Quartile					
	Q1 n = 462	Q2 n = 456	Q3 n = 472	Q4 n = 459		
BW at 30 DIM (kg)	512.4a ± 0.81	552.6 ^b ± 0.82	583.3° ± 0.80	630.7 ^d ± 0.81		
MBW ¹ (%)	74.7a ± 0.001	80.5 ^b ± 0.001	85.0° ± 0.001	91.9 ^d ± 0.001		
Age at calving (d)	674.6 ^a ± 1.25	681.8 ^b ± 1.25	688.2° ± 1.24	694.6 ^d ± 1.25		

a-d Within a row, means with different superscripts differ (P<0.05)

%MBW Targets:

55% MBW at 1st Al 85% MBW postcalving

Predicted Transmitting Abilities (PTAs)

	Body Weight Quartile					
	Q1 n = 462	Q2 n = 456	Q3 n = 472	Q4 n = 459		
PTA Milk	173.1 ^b ± 9.8	188.6 ^{ab} ± 9.8	179.2 ^b ± 9.7	215.0° ± 9.8		
PTA Stature	-0.56° ± 0.03	-0.52 ^{bc} ± 0.03	-0.46 ^b ± 0.03	-0.29 ^a ± 0.03		
PTA Feed Save	31.9 ^a ± 2.0	24.6 ^b ± 2.0	13.4° ± 2.0	5.7 ^d ± 2.0		
PTA PL	2.4 ^a ± 0.04	2.2 ^{bA} ± 0.04	2.1 ^{bcB} ± 0.04	1.9 ^d ± 0.04		
PTA DPR	0.37a ± 0.05	0.27 ^{ab} ± 0.05	0.26 ^{ab} ± 0.05	0.11 ^b ± 0.05		
PTA HCR	0.03 ^a ± 0.04	$0.0^{a} \pm 0.04$	-0.08 ^{ab} ± 0.04	-0.16 ^b ± 0.04		

^{a,b} Within a row, means with different superscripts differ (P<0.05)

15

Beef Holstein-Conventional Holstein-Sexed Other Dairy Lauber et al., 2023. 100% Characterization of semen type 759 prevalence and allocation in 50% Holstein and Jersey females in the **United States.** 100% J. Dairy Sci. 106:3748-3760 75% %) 8,284,770 insemination records 25% 0% from 3,115,224 Holstein females 100% from 9,196 herds 759 100% 75%

Commercial Application of Sexed Semen in Holstein Heifers DeJarnette et al., J. Dairy Sci. 91:459; 2008 (Abstr.) 49 herds from Jan 2005 to Jan 2008; 41,398 sexed semen Al services. Sexed semen resulted in ~45% CR and ~90% female calves in Holstein heifers. □ Conventional □ Sex-Sorted 60 56 54 Conception rate (%) 50 47 45 43 83% 38 40 80% 84% of Conv. 30 Conv. of Conv. 20 10 0 1st 3+ 2nd Al service number

J. Dairy Sci. 96:7054–7065 http://dx.doi.org/10.3168/jds.2013-7093 © American Dairy Science Association®, 2013. Hormonal manipulations in the 5-day timed artificial insemination protocol to optimize estrous cycle synchrony and fertility in dairy heifers F. S. Lima,* E. S. Ribeiro,* R. S. Bisinotto,* L. F. Greco,* N. Martinez,* M. Amstalden,† W. W. Thatcher,* and J. E. P. Santos*1
*Department of Animal Sciences, University of Florida, Gainesville 32611
†Department of Animal Sciences, Texas A&M University, College Station 77843 P/AI, 60 d PGF_{2a} GnRH+Al 5d 49% 32d "NG1P" US BS PD (348/711)PGF₂₀ PGF₂ GnRH+Al 32d **52**% "NG2P" US US BS PD (359/696)PGF₂₀ PGF₂₀ GnRH+AI GnRH CIDR 32d **59%** "G2P" US US BS PD

D40

D5

D6

US = Ovarian ultrasonography; BS = Blood sampling; PD = Pregnancy diagnosis

D8

(420/711)

Effect of delayed timing of artificial insemination with sex-sorted semen on pregnancy per artificial insemination in synchronized dairy heifers managed in a seasonal-calving pasture-based system

S. G. Moore, 1 A. D. Crowe, 1,2 F. Randi, 3 and S. T. Butler 1 to 1

Objective

To compare P/AI in dairy heifers enrolled in a 6 d Co-Synch protocol and inseminated with sexsorted semen either at the time of G2 or 8 h later.

41

Partial	Bud	lget	Ana	lysi	S

EDAI	CIDDE		•
n = 181	CIDR5 n = 225	CIDR6 n = 218	P- value
4.05 ± 0.38a	22.29 ± 0.36 ^b	21.85 ± 0.36 ^b	< 0.0001
3.04 ± 0.19a	2.03 ± 0.18b	2.18 ± 0.17 ^b	< 0.0001
70.50 ± 2.47	69.78 ± 2.37	72.02 ± 2.28	0.39
9.55 ± 0.24	9.50 ± 0.14	9.42 ± 0.13	0.42
82.79 ± 3.01 ^a	50.10 ± 2.73b	56.84 ± 2.56b	< 0.0001
169.92 ± 5.55ª	153.26 ± 5.36 ^b	162.75 ± 5.03 ^{ab}	0.04
	3.04 ± 0.19^{a} 70.50 ± 2.47 9.55 ± 0.24 82.79 ± 3.01^{a}	3.04 ± 0.19^{a} 2.03 ± 0.18^{b} 70.50 ± 2.47 69.78 ± 2.37 9.55 ± 0.24 9.50 ± 0.14 82.79 ± 3.01^{a} 50.10 ± 2.73^{b}	3.04 ± 0.19^{a} 2.03 ± 0.18^{b} 2.18 ± 0.17^{b} 70.50 ± 2.47 69.78 ± 2.37 72.02 ± 2.28 9.55 ± 0.24 9.50 ± 0.14 9.42 ± 0.13 82.79 ± 3.01^{a} 50.10 ± 2.73^{b} 56.84 ± 2.56^{b}

J. Dairy Sci. 107:2524–2542 https://doi.org/10.3168/jds.2023-23892

© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association® This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Effect of postpartum body condition score change on the pregnancy outcomes of lactating Jersey cows inseminated at first service with sexed Jersey or conventional beef semen after a synchronized estrus versus a synchronized ovulation

M. R. Lauber [⊙] and P. M. Fricke^{*} [⊙] Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706

Enrollment

336 primiparous and 950 multiparous Jersey cows

	Trea		
Semen	DO	EDAI	Total
Beef	317	227	544
Sexed	398	344	742
Total	715	571	1,286

The decision to inseminate cows with sexed vs. beef semen was made by the farm. Mated cows were then randomized to treatment *within* each semen type.

51

2023 Timing of AI Case Study

1,850-cow Holstein herd in Wisconsin

Cow - 1st Service CoSync vs OvSync56

Below you'll find cow conception rates for 1st service ONLY by semen type for the different protocols.

The chart below is ONLY 1st service CoSync – up to Nov 24th

										J
Semen	туре	95% CI	%Conc	#Preg	#Open	Other	Abort	Total	%Tot	SPC
=====	=====	=====	=====	=====	=====	=====	=====	=====	====	====
	Sexed	22-32	26	79	221	6	2	306	70	3.8
	Beef	45-62	54	69	59	6	3	134	30	1.9
T	OTALS	30-39	35	148	280	12	5	440	100	2.9

Take-Home Messages

- Heifers should be inseminated at 55% MBW and be 85% MBW postcalving.
- Conception rates in Holstein heifers inseminated using conventional semen are ~60%
- Delaying CIDR removal by 24 h in a 5-d CIDR-Synch protocol for first TAI eliminated early estrus without affecting fertility when heifers were inseminated with conventional semen.
- Submission of heifers to a 5-d CIDR-Synch protocol for first TAI when using sexed semen increased fertility and decreased total days on feed compared with heifers detected in estrus after treatment with PGF_{2q} for first AI.

57

